Regional anesthesia for trauma outside the operating theatre

Jason J. Choi, Emily Lin, and Jeff Gadsden

Purpose of review
Pain management in the trauma patient can be challenging, especially outside the operating room setting. Traditional analgesics such as opioids and NSAIDs are also problematic in trauma care. In this review, the use of regional anesthetic techniques outside the operating theatre is discussed.

Recent findings
Regional anesthesia is an increasing but still underutilized clinical tool for the trauma patient outside the operating room. Regional anesthesia provides well tolerated and effective analgesia and anesthesia for many indications in the trauma setting including hip fracture, reduction of joint dislocation, wound debridement, laceration repair, and multiple rib fractures. Its use can increase safety and resource allocation in emergency departments. Performance of peripheral nerve blocks, especially with ultrasound, is amenable in various medical environments with minimal training.

Summary
Pain is often poorly managed in the trauma patient. In addition to quality analgesia, regional anesthesia provides a variety of benefits in the trauma setting outside the traditional operating room setting. While further utilization requires increased training and structural changes, existing tools such as ultrasound are removing barriers to the widespread use of peripheral nerve block techniques across multiple disciplines.

Keywords
emergency room, nerve block, prehospital, regional anesthesia, trauma

INTRODUCTION
Pain management in the trauma patient faces a number of challenges. During resuscitation of the critically injured patient, analgesia is clearly not the highest priority. Moreover, even following initial stabilization, pain is often used as a physical sign that clinicians are reluctant to mask (e.g., abdominal pain, cervical spine pain, or pain in a tense musculoskeletal compartment). However, inadequate analgesia should be avoided for more than simply humanitarian reasons; recent studies have shown that untreated pain leads to a higher incidence of conditions, such as chronic pain and post-traumatic stress disorder [1].

Analgesics such as opioids and NSAIDs are often avoided, particularly in chest or neurotrauma, due to side-effects such as respiratory depression, sedation, and bleeding. These limitations have driven the increased use of regional anesthesia in trauma care. Regional anesthetic techniques can provide high-quality, targeted pain relief and lack the side-effects associated with opioids and NSAIDs. Much has been written about the use of regional anesthesia during the operative management of trauma patients. This review will instead focus on the utility of regional anesthesia in the injured patient outside the operating room, and in particular the prehospital setting and the emergency department (ED).

*St. Luke’s-Roosevelt Hospital Center and †Columbia University College of Physicians and Surgeons, St. Luke’s-Roosevelt Hospital Center, New York, New York, USA

Correspondence to Jeff Gadsden, MD, FRCP, FANZCA, Department of Anesthesiology, St. Luke’s-Roosevelt Hospital Center, 1111 Amsterdam Avenue, New York, NY 10025, USA. Tel: +1 212 523 2500; fax: +1 212 523 3930; e-mail: jeffgadsden@gmail.com

Curr Opin Anesth 2013, 26:495–500
DOI:10.1097/ACO.0b013e3283625ce3
THE ADVANTAGES OF REGIONAL ANESTHESIA IN TRAUMA CARE

The benefits of regional anesthesia techniques in the trauma patient have been well described, and are summarized as follows:

1. Site-specific, high-quality analgesia without risk of respiratory depression, obtundation, and bleeding associated with opioids and NSAIDS.
2. The growing availability and mobility of ultrasound equipment has allowed for increased performance and teaching of peripheral nerve blocks outside the traditional operating room environment.
3. Regional anesthesia techniques offer well tolerated and effective analgesia for specific trauma indications, such as hip fracture, rib fracture, joint dislocations, and minor extremity emergencies.
4. Use of peripheral nerve blocks in patients at risk for compartment syndrome remains controversial, but there is no definitive correlation between the use of PNB and possible delay in diagnosing compartment syndrome.
5. In stable and selected trauma patients, regional anesthesia outside of the operating room is increasingly feasible but requires additional training and structural changes across multiple disciplines.

GENERAL CONSIDERATIONS FOR REGIONAL ANESTHESIA OUTSIDE THE OPERATING ROOM

Initial priorities in trauma care include airway management, control of bleeding, stabilization of the spine, and so on. There are two general strategies to the prehospital management of the injured patient. The first, nicknamed ‘scoop-and-run’, is based on the principle that on-scene attempts at stabilization ultimately delay transfer to definitive care, and the patient should simply be extricated and transferred expeditiously. The alternative (‘stay and play’) strategy suggests that some degree of on-scene resuscitation and treatment is beneficial, and should be performed prior to transfer. This is a controversial topic, and several factors influence the appropriateness of either strategy, including the level of training of the Emergency Medical Services team (e.g., physicians versus firefighters), the predicted transfer time to hospital, and most importantly, the clinical status of the patient [2,3].

Regional anesthesia may not be suitable in certain circumstances but can be used safely in selected patients. Clearly, when ongoing resuscitation is still being addressed, analgesia should not be a priority. In addition, the risks of peripheral nerve block may outweigh its benefit under certain conditions, for example, when an injured limb has neurologic or vascular impairment mandating frequent assessments (see section on complications). Although continuous catheter techniques have many advantages in the injured patient, the risk of infection with a catheter is higher in trauma patients admitted to ICU [odds ratio (OR) 5.07] [4].

Peripheral nerve blockade (PNB) requires specialized training that has traditionally been the domain of the operating room anesthesiologist. Increasingly, emergency medicine physicians as well as intensivists and traumatologists with non-anesthesiology backgrounds are gaining experience with PNB techniques [5,6]. The routine availability of ultrasound equipment in both the ED and ICU for line placement, cardiac exam, and so on, has contributed to the rise of PNBs in these areas. Emergency medicine fellowship training programs in ultrasonography are now commonly including nerve blocks as part of the curriculum. Recently, portable and relatively low-cost ultrasound machines designed for point-of-care use outside hospital settings have become available and have been helpful during on-scene evaluation and transport in both civilian and military medicine [7].

SPECIFIC INDICATIONS FOR PERIPHERAL NERVE BLOCKADE IN THE TRAUMA PATIENT

There are several common injuries that are well suited to PNB for management of pain and/or therapy, including hip and/or femoral fracture, shoulder dislocation, distal extremity injuries, and fractured ribs.

Hip/femur fracture

Femoral neck fractures in the elderly carry high morbidity and adversely affect quality of life.
Although pain from the fracture site is often moderate-to-severe, opioid administration is often restricted in this population because of concerns of delirium or respiratory depression, and many hip fracture patients are left in considerable discomfort while awaiting surgical repair [8*].

The femoral nerve innervates much of the femur and hip joint; in patients with femoral neck fractures, there are clear benefits to performing femoral nerve or fascia iliaca blocks (FIB) as early as possible (i.e., in the ED). These include significantly decreased pain scores, a reduction in opioid requirements, aiding in reduction of fracture, and facilitating positioning on the operating room table [9]. Patients often experience delays in surgical repair of up to several days, and repeated daily FIB has been shown to reduce risk of delirium, a significant independent risk factor of morbidity and mortality, in the elderly compared with sham block [10]. Obturator nerve block is also strongly associated with a reduction in pain scores in hip fracture patients [11**].

All three of these blocks are easily performed in the preoperative setting. Performance of FIB in particular has several specific advantages: it requires minimal equipment (e.g., a syringe and needle), is easily learned and performed, and has a high efficacy [12–14]. Lopez et al. [13] demonstrated that pain scores were significantly reduced 10 min after the performance of FIB for isolated femur fracture by prehospital personnel in the field, reinforcing the simplicity, and effectiveness of the technique. As it relies on spread of local anesthetic along a fascial plane, a large volume of local anesthetic (20–30 ml) is necessary to ensure blockade of the femoral nerve. The FIB is thought to be a relatively well tolerated block, as the puncture and injection site is sufficiently lateral to prevent vascular or neural injury.

Shoulder reduction

Reduction of a dislocated shoulder is a common procedure performed in the ED. Intravenous procedural sedation using propofol, ketamine, or etomidate is commonly employed to produce sufficient muscle relaxation to reduce the joint [15,16]. However, procedural sedation is not often ideal for such short and limited procedures. Most patients presenting to the emergency room with injuries are assumed to have full stomachs, and as such are at increased risk for gastric aspiration if protective reflexes are abolished with sedation. Hypotension and/or respiratory compromise are real risks, especially with such potent cardiopulmonary depressive agents as propofol. These risks mandate close monitoring and 'one-on-one' care in the emergency room that can occupy nursing resources.

Regional anesthesia, particularly interscalene brachial plexus block (ISB), offers an attractive alternative that eases the requirements for performing shoulder dislocation reduction. ISB provides profound shoulder girdle muscle relaxation by anesthetizing the superior trunk of the brachial plexus. ISB does not require sedation, and although cardiorespiratory monitoring is still required, the risk of apnea or hypotension is virtually nonexistent. Blaivas et al. [17] demonstrated that length of stay in the ED and need for one-on-one care is reduced in patients receiving ISB versus procedural sedation for shoulder reduction [17].

Other extremity trauma

Common extremity injuries include fractures, lacerations, crush injuries, and even amputations. Many of these minor injuries are nonoperative, but still require thorough examination, debridement, suturing, and/or reduction in the ED, tasks that can be challenging when analgesic options are limited to local anesthetic infiltration and sedation. For example, using local anesthetic infiltration to anesthetize a laceration on the sole of the foot is very uncomfortable for both patient and clinician; in contrast, a posterior tibial nerve block using 4–5 ml of local anesthetic is relatively pain-free and provides ideal conditions for debridement and closure.

Stone et al. [18] demonstrated that ultrasound-guided supraclavicular blocks performed in the emergency room resulted in a shorter length of stay in the ED without affecting patient safety or satisfaction for treatment of upper extremity fractures, dislocations, or abscesses compared with procedural sedation. Further advantages cited by the authors included a reduced requirement for additional oral/parenteral analgesia as well as minimal monitoring and staffing. In crowded EDs with overburdened resources and staffing, the potential to quickly discharge patients is appealing.

For more distal upper extremity injuries, when weakness or numbness of the entire arm may not be warranted, or when experience with brachial plexus blocks is limited, blockade of individual nerves distal to the brachial plexus present an attractive alternative for analgesia or facilitation of interventions outside the operating room. Supracondylar radial nerve blocks have been used to allow for successful closed reduction and splinting of distal radius fractures, a common presentation with trauma [19]. In addition, emergency physicians with little to no experience in placing ultrasound-guided nerve blocks of the median, ulnar, and radial nerves in the forearm were effectively able to provide...
analgesia or anesthesia for procedural interventions of the hand after minimal training [20]. Simpson et al. [21] showed that a properly trained paramedic team could successfully perform digital blocks in the field to facilitate reduction of a dislocated finger, obviating the need for opioids. Such distal blocks require small doses of local anesthetic (e.g., 4–5 ml/nerve), conferring an added safety advantage with respect to systemic toxicity.

Rib fractures

Rib fractures are a common and potentially serious injury following blunt trauma. Overall morbidity and mortality increases significantly as the number of rib fractures increase, largely because of pulmonary compromise [22]. Quality analgesia is a priority in the patient with rib fractures. This permits deep breathing, coughing, and chest physiotherapy with the aim of preventing respiratory complications. Although useful in the initial setting, opioids are disadvantageous in the stabilized patient, as they can exacerbate hypoventilation, atelectasis, and pulmonary infection. Several regional anesthesia techniques for analgesia are available and offer superior analgesia with reduction in respiratory complications. Each carries its individual risks and benefits, and selection should be tailored accordingly to each trauma patient.

Thoracic epidural analgesia (TEA) is a technique that is ideal for rib fractures, especially if bilateral [22–24]. TEA does not require specialized equipment, and can be performed in the ED, ICU, or virtually any other location in the hospital. Its use is limited primarily by the use of anticoagulants for deep venous thrombosis prophylaxis as well as any sympathectomy that may result in an already hemodynamically unstable trauma patient.

Paravertebral blockade (PVB) appears to provide equivalent analgesia compared with TEA for pain due to rib fracture [25,26**]. Like TEA, PVB is amenable to catheter placement [27], which allows for the reduction in opioids and faster return to function [28]. The unilateral nature of PVB compared with TEA confers several advantages, such as decreased sympathectomy and hypotension, improved neurologic assessment, and a reduction in the incidence of urinary retention. Risks to PVB are small but include pneumothorax, local anesthetic systemic toxicity (LAST), and epidural spread [29–31].

Intercostal nerve block (ICNB) is also effective as an analgesic modality postrib fracture [32], but because spread of injectate is limited between levels anatomically, ICNB typically requires multiple injections and/or catheter placements. This block is particularly well suited to settings outside the operating room because of its ease of performance; the landmark-based technique simply involves walking the needle off the inferior margin of the rib at its angle before aspirating and injecting the local anesthetic. Risks are again small, but include pneumothorax and LAST given its close proximity to both the parietal pleura and intercostal vessels. Performance of this technique is more technically difficult at levels above T7 as the scapula overlies the angles of the ribs. ICNB have been successfully used to reduce the pain associated with chest drain insertion for traumatic pneumothorax in the ED [33].

SPECIAL PROBLEMS: COMPARTMENT SYNDROME

One of the most serious complications of extremity trauma is the development of acute compartment syndrome (ACS), which is most common in men below 35 years following tibial or forearm fracture [34]. ACS occurs when swelling in an injured osteofascial compartment leads to increased pressure and eventual collapse of capillaries, halting tissue circulation, and leading to cellular hypoxia and the release of mediators increasing vascular permeability. The subsequent leakage of fluid through capillary and muscle membranes promotes further edema and worsens the intracompartmental pressure [35].

The use of PNBs in patients at risk for ACS is controversial. Although the analgesia provided by PNBs may be beneficial, some clinicians fear an insensate limb may delay diagnosis of ACS by masking important symptoms such as pain and/or paresthesia [36]. However, the sensitivity of these subjective symptoms appears to be low (<20%) [37], and little is known about the effect of PNBs on these clinical diagnostic tools. To date, only five case reports have been published relating specifically to peripheral nerve blocks and ACS, and none were placed outside the operating room.

Two cases involve continuous catheter techniques wherein the diagnosis and treatment of ACS was facilitated in a timely manner by the onset of breakthrough pain during infusion of 0.2% ropivacaine [38**,39]. The authors suggest that although such a dilute solution may be sufficient for routine acute pain, the severe pain of ischemia is unmasked in early ACS. This may not be the case with patient-controlled opioids, wherein sedation and the ability to self-titrate may confound the perception of worsening pain [40]. A third case of pain breaking through a femoral block performed with 0.75% ropivacaine demonstrated that the need for supplemental opioids despite good initial analgesia may be
a warning sign of ACS [41]. Similarly, Noopuri et al. [42] demonstrated that ankle block with 0.25% bupivacaine for forefoot arthroplasty failed to prevent unremitting pain, leading to the diagnosis of ACS and unsuccessful surgical intervention.

In contrast, Hyder et al. [43] asserted that a femoral block was responsible for a missed anterior compartment syndrome of the leg following intra-medullary nailing. However, the anterior compartment is innervated by the deep peroneal nerve, a branch of the sciatic nerve, making femoral block an unlikely contributing factor.

It is somewhat difficult at the present time to make a definitive correlation between the use of PNBs and the possible delay in diagnosing compartment syndrome. Not only does the nature of this syndrome preclude randomized-controlled trials, but it is also possible that these events are simply underreported or simply avoided in high-risk patients. Rather than focusing on whether to perform a PNB or not, our attention might be better directed toward careful monitoring of analgesic consumption, breakthrough pain, and the use of compartment pressure monitoring for high-risk patients. Vigilance of all medical personnel involved in the patient’s care is the key to early detection.

CONCLUSION

Regional anesthesia confers a variety of benefits to trauma patients. Although used widely intraoperatively, its utility should not be limited to the operating room setting. In addition to improving patient comfort, the early use of regional anesthesia in trauma appears to improve outcomes such as, pulmonary morbidity, delirium, chronic pain, and post-traumatic stress disorder. The expansion of regional anesthesia outside the operating room requires structural changes in terms of expert training and equipment suited to ease-of-use and mobility. Improving technology and application of ultrasound as a point-of-care tool allows for the expansion of regional anesthesia through multidisciplinary care providers. When used judiciously and in selected patients, regional anesthesia provides a cost-effective and well tolerated method of relieving pain in injured patients in multiple settings outside of the operating room.

Acknowledgements

All funding was departmental.

Conflicts of interest

There are no conflicts of interest.

39. The prompt diagnosis and treatment of an evolving compartment syndrome due to breakthrough pain while using a continuous peripheral nerve block highlights importance of vigilance and identification of high-risk patients for early diagnosis and prevention.

